Sensor Gas Amonia Berbasis Polimer Konduktif Polianilina: Sebuah Review

  • Said Ali Akbar Universitas Serambi Mekkah
Keywords: Sensor Gas, Polimer, Amonia, Komposit, Polianilina

Abstract

Artikel review ini memberikan informasi tentang aplikasi polianilina (PANI) dan kompositnya sebagai sensor gas berbahaya khususnya amonia (NH3). Kajian yang dibahas pada artikel ini meliputi sifat gas NH3, material komposit, kinerja sensor, serta limit deteksi. Tinjauan sensor gas amonia berbasis polimer konduktif polianilina secara menyeluruh diambil dari referensi sepuluh tahun terakhir. Sebagai contoh, komposit polianilina dengan turunan karbon seperti reduced Graphene Oxide (rGO) dan Carbon Nanotube menunjukkan limit deteksi hingga 46 ppb dengan waktu pemulihan hanya 75 detik. Selain itu, komposit PANI dengan logam seperti Ag, Sr dan sebagainya, menunjukkan limit deteksi yang lebih besar yaitu 1 ppm, namun terdapat keunggulan dimana waktu pemulihan hanya 4 deti. Oleh sebab itu, polimer konduktif polianilina menjadi material yang sangat menjanjikan untuk mendeteksi keberadaan gas NH3. Terakhir, mekanisme penginderaan gas amonia terhadap material PANI juga dibahas pada tulisan ini.

Referensi:

[1]       M. Insausti, R. Timmis, R. Kinnersley, and M. C. Rufino, “Advances in sensing ammonia from agricultural sources,” Science of the Total Environment, vol. 706. 2020. doi: 10.1016/j.scitotenv.2019.135124.

[2]       H. Shen et al., “Intense Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and Ecosystem Health,” One Earth, vol. 3, no. 1, 2020, doi: 10.1016/j.oneear.2020.06.015.

[3]       W. Wu, B. Wei, G. Li, L. Chen, J. Wang, and J. Ma, “Study on ammonia gas high temperature corrosion coupled erosion wear characteristics of circulating fluidized bed boiler,” Engineering Failure Analysis, vol. 132, p. 105896, 2022, doi: https://doi.org/10.1016/j.engfailanal.2021.105896.

[4]       X. Huang et al., “Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing,” Journal of Materials Chemistry, vol. 22, no. 42, pp. 22488–22495, 2012, doi: 10.1039/C2JM34340A.

[5]       T. Jiang, P. Wan, Z. Ren, and S. Yan, “Anisotropic Polyaniline/SWCNT Composite Films Prepared by in Situ Electropolymerization on Highly Oriented Polyethylene for High-Efficiency Ammonia Sensor,” ACS Applied Materials & Interfaces, vol. 11, no. 41, pp. 38169–38176, Oct. 2019, doi: 10.1021/acsami.9b13336.

[6]       H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors, vol. 7, no. 3. 2007. doi: 10.3390/s7030267.

[7]       D. Kwak, Y. Lei, and R. Maric, “Ammonia gas sensors: A comprehensive review,” Talanta, vol. 204. 2019. doi: 10.1016/j.talanta.2019.06.034.

[8]       M. Eising, C. E. Cava, R. V. Salvatierra, A. J. G. Zarbin, and L. S. Roman, “Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor,” Sensors and Actuators, B: Chemical, vol. 245, pp. 25–33, 2017, doi: 10.1016/j.snb.2017.01.132.

[9]       M. P. Diana, W. S. Roekmijati, and W. U. Suyud, “Why it is often underestimated: Historical Study of Ammonia Gas Exposure Impacts towards Human Health,” in E3S Web of Conferences, 2018, vol. 73. doi: 10.1051/e3sconf/20187306003.

[10]     R. T. Xu et al., “Half-Century Ammonia Emissions From Agricultural Systems in Southern Asia: Magnitude, Spatiotemporal Patterns, and Implications for Human Health,” GeoHealth, vol. 2, no. 1, 2018, doi: 10.1002/2017GH000098.

[11]     S. A. Akbar, A. Mardhiah, N. Saidi, and D. Lelifajri, “The effect of graphite composition on polyaniline film performance for formalin gas sensor,” Bulletin of the Chemical Society of Ethiopia, vol. 34, no. 3, 2021, doi: 10.4314/bcse.v34i3.14.

[12]     X. Wang, L. Gong, D. Zhang, X. Fan, Y. Jin, and L. Guo, “Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites,” Sensors and Actuators B: Chemical, vol. 322, p. 128615, 2020, doi: https://doi.org/10.1016/j.snb.2020.128615.

[13]     L. Wang et al., “Enhanced Sensitivity and Stability of Room-Temperature NH3 Sensors Using Core–Shell CeO2 Nanoparticles@Cross-linked PANI with p–n Heterojunctions,” ACS Applied Materials &Interfaces, vol. 6, no. 16, pp. 14131–14140, Aug. 2014, doi: 10.1021/am503286h.

[14]     Y. Guo et al., “Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors,” Nanoscale, vol. 8, no. 23, pp. 12073–12080, 2016, doi: 10.1039/C6NR02540D.

[15]     M. Eising, C. E. Cava, R. V. Salvatierra, A. J. G. Zarbin, and L. S. Roman, “Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor,” Sensors and Actuators B: Chemical, vol. 245, pp. 25–33, 2017, doi: https://doi.org/10.1016/j.snb.2017.01.132.

[16]     S. Bai et al., “Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors,” Small, vol. 11, no. 3, 2015, doi: 10.1002/smll.201401865.

[17]     Z. Wu et al., “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sensors and Actuators, B: Chemical, vol. 178, 2013, doi: 10.1016/j.snb.2013.01.014.

[18]     N. R. Tanguy, B. Wiltshire, M. Arjmand, M. H. Zarifi, and N. Yan, “Highly Sensitive and Contactless Ammonia Detection Based on Nanocomposites of Phosphate-Functionalized Reduced Graphene Oxide/Polyaniline Immobilized on Microstrip Resonators,” ACS Applied Materials and Interfaces, vol. 12, no. 8, 2020, doi: 10.1021/acsami.9b21063.

[19]     D. Maity and R. T. R. Kumar, “Polyaniline Anchored MWCNTs on Fabric for High Performance Wearable Ammonia Sensor,” ACS Sensors, vol. 3, no. 9, 2018, doi: 10.1021/acssensors.8b00589.

[20]     J. Ma et al., “Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses,” Sensors and Actuators, B: Chemical, vol. 334, May 2021, doi: 10.1016/j.snb.2021.129677.

[21]     A. Javadian-Saraf, E. Hosseini, B. D. Wiltshire, M. H. Zarifi, and M. Arjmand, “Graphene oxide/polyaniline-based microwave split-ring resonator: A versatile platform towards ammonia sensing,” Journal of Hazardous Materials, vol. 418, Sep. 2021, doi: 10.1016/j.jhazmat.2021.126283.

[22]     A. Liu et al., “The gas sensor utilizing polyaniline/ MoS2 nanosheets/ SnO2 nanotubes for the room temperature detection of ammonia,” Sensors and Actuators, B: Chemical, vol. 332, Apr. 2021, doi: 10.1016/j.snb.2021.129444.

[23]     Q. Feng, H. Zhang, Y. Shi, X. Yu, and G. Lan, “Preparation and gas sensing properties of PANI/SnO2 hybrid material,” Polymers, vol. 13, no. 9, May 2021, doi: 10.3390/polym13091360.

[24]     S. Benhouhou, A. Mekki, M. Ayat, and N. Gabouze, “Facile Preparation of PANI-Sr Composite Flexible Thin Film for Ammonia Sensing at Very Low Concentration,” Macromolecular Research, vol. 29, no. 4, pp. 267–279, Apr. 2021, doi: 10.1007/s13233-021-9034-3.

[25]     X. Wang et al., “In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator,” Nano Energy, vol. 88, Oct. 2021, doi: 10.1016/j.nanoen.2021.106242.

[26]     J. Chang et al., “Polyaniline-Reduced Graphene Oxide Nanosheets for Room Temperature NH3Detection,” ACS Applied Nano Materials, vol. 4, no. 5, pp. 5263–5272, May 2021, doi: 10.1021/acsanm.1c00633.

[27]     S. Matindoust, A. Farzi, M. Baghaei Nejad, M. H. Shahrokh Abadi, Z. Zou, and L. R. Zheng, “Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 11, 2017, doi: 10.1007/s10854-017-6471-z.

[28]     J. Cai, C. Zhang, A. Khan, C. Liang, and W. di Li, “Highly transparent and flexible polyaniline mesh sensor for chemiresistive sensing of ammonia gas,” RSC Advances, vol. 8, no. 10, pp. 5312–5320, 2018, doi: 10.1039/c7ra13516e.

[29]     T. Syrový et al., “Gravure-printed ammonia sensor based on organic polyaniline colloids,” Sensors and Actuators, B: Chemical, vol. 225, pp. 510–516, Mar. 2016, doi: 10.1016/j.snb.2015.11.062.

 

Published
2022-02-02
Section
Articles