The Growth of Bacillus cereus (IHB B 379) Isolates at Different Temperature and Concentration of Mercury Chloride (HgCl2)
Abstract
Bacillus cereus (IHB B 379) has been isolated from the sediments of the illegal gold mining area located in Danau Biru Singkawang, these bacteria have resistant properties by being able to grow on media containing HgCl2 with a concentration of 500 ppm. This study aimed to determine the effect of temperature and concentration of mercuric chloride (HgCl2) on the growth of Bacillus cereus (IHB B 379) and to determine the temperature and concentration of mercuric chloride (HgCl2) on the optimum growth of Bacillus cereus (IHB B 379). The study used a Completely Randomized Factorial Design (CRD) consisting of two treatment factors. The first factor was a different temperature treatment with three levels, namely 320C, 370C, and 420C. The second factor was the treatment of the mercuric chloride (HgCl2) concentration with three levels, namely 0 ppm, 250 ppm, and 500 ppm. The Bacillus cereus (IHB B 379) growth test used the delusional method and the number of colonies was calculated using the Total Plate Count (TPC) method. The results showed that the growth of Bacillus cereus (IHB B 379) was seriously affected by the temperature and concentration of HgCl2 . The best growth pattern of Bacillus cereus (IHB B 379) was occurred at 320C and concentration HgCl2 250 ppm.References
Barkay, TSM, Miller and Summers, AO, 2003, Bacterial mercury resistance from atoms to ecosystem, FEMS, Microbiol, Rev, vol, 27, hal, 355-384.
Blaudez, D, Botton, B and Chalot, M, 2000, Effects of heavy metals on nitrogen uptake by mycorrhizal birch seedings, FEMS Microbiol, Ecol, vol, 33, hal, 61-67.
Canstein Y. K Li, N Timmis, W-D Deckwer and I Wagner-Dobler. 1999. Removal of Mercury from Chloralkali Electrolysis Wastewater by a Mercury-Resistant Pseudomonas putida sit&xn.App Environ Microbiol. Vol, 65 (12), hal, 5279.
Chang JS, Hong, J, Oa, O and Oa, Bh, 1993, Interaction of mercuric ions with the bacterial growth medium and its effects on enzymatic reduction of mercury, Biotechnology Program, vol, 9, hal, 526-532.
Chaerun, SK, Hasni, S, Sanwani, E, dan Moeis, AM, 2012, Mercury (Hg)-resistant bacteria in Hg-polluted gold mine sites of Bandung, West Java Province, Indonesia, Microbiology Indonesia, vol, 6, no, 2, hal, 57-68.
Darmono, 1995, Logam dalam Sistem Biologi Makhluk Hidup, Ul-Press, Jakarta
Deckwer, WD, Becker, FU, Ledakowitcz, S and Dobler, LW, 2004, Microbial removal of ionic mercury in three phase fluidized bed reactor, Environ Sci Technol, vol, 38, hal, 1858-1865.
E, Zulaika, L, Sembiring, and Soegianto,2012, Characterization and Identification of Mercury-resistant Bacteria from Kalimas River Surabaya-Indonesia by Numerical Phenotic Taxonomy, Journal Basic and Applied Science Res, vol, 2, hal, 7263-7269.
E, Zulaika, and L, Sembiring, 2014, Indegenous Mercury Resistant Bacterial Isolates Belong to The Genus Bacillus from Kalimas Surabaya As A Potential Mercury Bioreducer, Journal Applied Environmental Biological Sciences, vol, 4, hal, 72-76.
E, Zulaika, A, Luqman, T, Arindah, dan U, Sholikah, 2012, Bakteri Resisten Logam Berat yang Berpotensi Sebagai Biosorben dan Bioakumulator, in Seminar Nasional Waste Management for Sustainable Urban Development, (2019, Feb).
Ehling-Schulz M, Guinebretière M, Monthan A, Berge O, Fricker M, Svensson B, 2006 Toxin gene profiling of enterotoxic and emetic Bacillus cereus, FEMS Microbiology Letters, vol, 260, no, 2, hal, 232–240.
Fatimawali, F, Badaruddin dan Yusuf, I, 2011, Isolasi dan Identifikasi Bakteri Resisten Merkuri dari Muara Sungai Sario Yang dapat Digunakan Untuk Detoksifikasi Limbah Merkuri, Jurnal Ilmiah Sains, vol, 11, no, 2, hal, 283.
Ghoshal, S,, Bhattacharya, P,, Chowdhury, R, 2011, De-mercurization of wastewater by Bacillus cereus (JUBT1): Growth kinetics, biofilm reactor study and field emission scanning electron microscopic analysis, Journal of Hazardous Materials,194: 355–361.
Gikas, P, 2007, Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)) an isobolographic approach, Journal of Hazardous Materials, vol, 143, hal, 246-256.
Granum, PE, 2007, Bacillus cereus Ch 20 In: Doyle MP, Beuchat LR (eds) Food microbiology: Fundamentals and frontiers, 3rd ed, ASM Press, Washington D,C.
Green-Ruiz, C, 2006, Mercury(II) removal from aqueous solutions by nonviable Bacillus sp, from a tropical estuary, Bioresource Technology, 97: 1907– 1911.
Gunaseelan, C dan Ruban, P, 2011, Heavy metal resistance bacterium isolated from Khrisna-Godavari basin, Bay of Bengal, International Journal of Environmental Sciences, vol, 1, no, 7, hal, 1856-1864.
Harley, JP dan Prescott, LM, 2002, Laboratory Exercise in Microbiology, 5th Edition, The Mc Graw Hill Companies, New York.
Harley JP, Prescott LM, Klein DA, Microbiology (4th ed), New York: McGraw-Hill, 1999; p, 55-90.
Imamudin, Hartati, 2010, Uji Resistensi Bakteri Terhadap Hgcl, Yang Diisolasi Dari Tanah Penambangan Emas Di Pongkor, Jawa Barat, Berita Biologi 10(4) - April 2011, Bidang Mikrobiologi, Pusat Penelitian Biologi-LIPI.
Iyer, A,, Mody, K, & Jha, B, 2005, Biosorption of heavy metals by a marine bacterium, Marine Pollution Bulletin, 50: 340 – 343.
J, P, Chen, 2012, Decontamination of Heavy Metals: Process, Mechanisms, and Applications, Taylor & Francis Group, Florida.
Kang, CH, Kwon, YJ, So, JS, 2016, Bioremediation of Heavy Metals by Using Bacterial Mixtures, ELSEVIER B,V Ecological Engineering, vol, 89, hal, 64-69.
Kurniatuhadi, R, Budiharjo, A dan Retnaningsih, TS, 2013, Studi Kemampuan Bioremoval Merkuri Dari Bakteri Bacillus Thuringiensis Dan Bacillus cereus Asal Danau Biru Singkawang, Kalimantan Barat, Tesis, Universitas Diponegoro Kampus Tembalang, Semarang.
Loyd, J,R, 2002, Bioremediation of metals, the application of microorganisms that make and break minerals, Microbial today 29: 67-69.
Mirdat, Y, Patadungan dan Isrun, 2013, Status Logam Berat Merkuri (Hg) Dalam Tanah Pada Kawasan Pengolahan Tambang Emas Di Kelurahan Poboya, Kota Palu, e-J Agrotekbis, vol, 1, no, 2, hal, 127-134.
Muneer, B, Iqbal, MJ, Shakoori, FR, Shakoori, AR, 2013, Tolerance and biosorption of mercury by microbial consortia: potential use in bioremediation of wastewater, Pakistan J, Zool, vol, 45, no, 1, hal, 247-254.
Rasmussen, LDC, Zawadsky, SJ, Binnerup, GOSJ, Sorensen dan Kroer, N, 2008, Cultivation of Hard-To-Culture Subsurface Mercury-Resistant Bacteria and Discovery of New merA Gene Sequences, App Environ Microbiol, vol, 12, no, 74, hal, 3795-3803.
Rehman, A, Ali, A, Muneer, B dan Shakoori, AR, 2007, Resistance And Biosorption Of Mercury By Bacteria Isolated From Industrial Effluents, Pakistan J, Zool, vol, 39, no, 3, hal, 137-146.
R, S, Laxman and S, More, 2002, Reduction of Hexavalent Chromium by Streptomyces griseus, Mineral Engineering, vol, 15, hal, 831-837.
Schoeni, JL, Wong, ACL, 2005, Bacillus cereus food poisoning and its toxins, Journal of Food Protection,vol, 68, no, 3, hal, 636–648.
Smith E, A Wolters and JDV Elsas, 1998, Self-tansmissible mercury resistance plamids with gene mobilizing capacity in soil bacterial population: influence of wheat roots and mercury addition, Appl, Environment Microbiology 64, 1210-1219.
Sumantri, A, Laelasari, Ela, NR, Junita dan Nasrudin, 2014, Logam Merkuri pada Pekerja Penambangan Emas Tanpa Izin, Jurnal Kesehatan Masyarakat Nasional, vol, 8, no, 8.
Vaituzis, Z, Nelson, JD, Wan, JrLW dan Colwell, RR, 1974, Effects ofMercuric Chloride on Growth and Morphology of Selected Strains of Mercury-Resistant Bacteria, ArrumD MICROBIOLOGY, vol, 29, no, 2.
Velásquez, L & Dussan, J, 2009, Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus, Journal of Hazardous Materials 167: 13 – 716.
Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T, 2005, Mercury adaptation among bacteria from a deep-sea hydrothernmal vent, Appl Environ Microb, 2005;71(1):2206.