Pengaruh Konsentrasi Doping Zn2+ Terhadap Nilai Konstanta Optik Nanopartikel Mn1-xZnxFe2O4

I Putu Tedy Indrayana, Rachmad Almi Putra

  • I Putu Tedy Indrayana 1Program Studi Fisika, Fakultas Ilmu Alam dan Teknologi Rekayasa, Universitas Halmahera INDONESIA
  • Rachmad Almi Putra
Kata Kunci: Zn2 doped Mn1-xZnxFe2O4 nanoparticles, optical constants

Abstrak

This study aimed at investigating the effect of Zn2+ concentration on the optical constants of Mn1-xZnxFe2O4 nanoparticles. The nanoparticles have been synthesized by using the coprecipitation method at a temperature of 90oC. The molar concentration of Zn2+ in the system of Mn1-xZnxFe2O4 is varied of 0.4; 0.6; and 0.8. The optical constants of the nanoparticles have been characterized by using Specular Reflectance UV-Visible Spectrophotometer (SR UV-Vis). The results show that absorbance, transmittance, %reflectance, absorption coefficient, refractive index, extinction coefficient, optical gap energy, Urbach energy, and optical conductivity depend on the concentration of Zn2+. Increasing Zn2+ leads to increasing those optical constants due to quantum confinement effects. The Zn2+ concentration directly affects the microstructure of the nanoparticles. Hence, the optical constants also directly depend on the microstructure. The Mn1-xZnxFe2O4 nanoparticles also show the photoconductive property that turns it to be very sensitive to the radiation of electromagnetic waves. Therefore, the nanoparticle has a potential application to be an active material for a signal amplifier of the SPR based biosensor.

Referensi

M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi dan Z. Issaabadi, “An Introduction to Nanotechnology,” dalam Interface Science and Technology, vol. 28, Elsevier Ltd, 2019, pp. 1-27.
F. J. Heiligtag dan M. Niederberger, “The Fascinating World of Nanoparticle Research,” Materials Today, vol. 7, no. 8, pp. 262-271, 2013.
M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi dan Z. Issaabadi, “Applications of Nanotechnology in Daily Life,” dalam An Introduction to Nanotechnology, vol. 28, Elsevier Ltd, 2019, pp. 113-143.
G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick dan J. Wang, “Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection,” ACS Nano, vol. xxxx, no. xxx, pp. xxx-xxx, 2020.
D. E. Mustafa, T. Yang, Z. Xuan, S. Chen, H. Tu dan A. Zhang, “Surface Plasmon Coupling Effect of Gold Nanoparticles with Different Shape and Size on Conventional Surface Plasmon Resonance Signal,” Plasmonic, vol. 5, p. 221–231, 2010.
Y. Bao, B. Zhao, D. Hou, J. Liu, F. Wang, X. Wang dan T. Cui, “The Redshift of Surface Plasmon Resonance of Colloidal Gold Nanoparticles Induced by Pressure with Diamond Anvil Cell,” Journal of Applied Physics, vol. 115, no. 223503, pp. 1-6, 2014.
A. S. Kushwaha, A. Kumar, R. Kumar, M. Srivastava dan S. K. Srivastava, “Zinc Oxide, Gold and Graphene-Based Surface Plasmon Resonance (SPR) Biosensor for Detection of Pseudomonas Like Bacteria: A Comparative Study,” Optik, vol. xxxx, no. xxx, pp. xxx-xxx, 2018.
P. S. Menon, F. A. Said, G. S. Mei, M. A. Mohamed, A. R. Mdzain, S. Shaari dan B. Y. Majlis, “High Sensitivity Au-based Kretschmann Surface Plasmon Resonance Sensor for Urea Detection,” Sains Malaysia, vol. 48, no. 6, p. 1179–1185, 2019.
J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini dan R. Tripathi, “Improved Performance of the Surface Plasmon Resonance Biosensor Based on Graphene or MoS2 using Silicon,” Optics Communications, vol. 359, p. 426–434, 2016.
M. S. Rahman, M. S. Anower, M. R. Hasan, M. B. Hossain dan M. I. Haque, “Design and Numerical Analysis of Highly Sensitive Au-MoS2-Graphene Based Hybrid Surface Plasmon Resonance Biosensor,” Optics Communications, vol. 396, p. 36–43, 2017.
H. Vahed dan C. Nadri, “Sensitivity Enhancement of SPR Optical Biosensor Based on Graphene–MoS2 structure with Nanocomposite Layer,” Optical Materials 88, vol. 88, p. 161–166, 2019.
B. Meshginqalam dan J. Barvestani, “Aluminum and Phosphorene Based Ultrasensitive SPR Biosensor,” Optical Materials, vol. 86, p. 119–125, 2018.
M. S. Rahman, M. R. Hasan, K. A. Rikta dan M. S. Anower, “A Novel Graphene Coated Surface Plasmon Resonance Biosensor with Tungsten Disulfide (WS2) for Sensing DNA Hybridization,” Optical Materials, vol. 75, pp. 567-573, 2018.
M. A. Garcia, “Surface Plasmons in Metallic Nanoparticles: Fundamentals and Applications,” Journal of Physics D: Applied Physics, vol. 44, no. 28, p. 283001, 2011.
F. Fathi , M. R. Rashidi dan Y. Omidi, “Ultra-sensitive Detection by Metal Nanoparticles Mediated Enhanced SPR Biosensor,” Talanta, vol. xxxx, no. xxx, pp. xxx-xxx, 2018.
X. Zuo, B. Barbiellini dan C. Vittoria, “Calculation of Exchange Constants in Manganese Ferrite (MnFe2O4),” Journal of Magnetism and Magnetic Materials, vol. 272–276, p. 306–311, 2004.
M. J. Akhtar dan M. Younas, “Structural and Transport Properties of Nanocrystalline MnFe2O4 Synthesized by Coprecipitation Method,” Solid State Sciences, vol. 14, pp. 1536-1542, 2012.
A. Elfalaky dan S. Soliman, “Theoretical Investigation of MnFe2O4,” Journal of Alloys and Compounds, vol. 580, p. 401–406, 2013.
A. Lungu, I. Malaescu, C. N. Marin, P. Vlazan dan P. Sfirloaga, “The Electrical Properties of Manganese Ferrite Powders Prepared by Two Different Methods,” Physica B, vol. 462, p. 80–85, 2015.
N. M. Deraz dan A. Alarifi, “Controlled Synthesis, Physicochemical and Magnetic Properties of Nano-Crystalline Mn Ferrite System,” International Journal of Electrochemical Science, vol. 7, pp. 5534 - 5543, 2012.
M. Augustin dan T. Balu, “Synthesis and Characterization of Metal (Mn,Zn) Ferrite Magnetic Nanoparticles,” dalam Materials Today: Proceedings, 2015.
A. Doaga, A. M. Cojocariu, W. Amin, F. Heib, P. Bender, R. Hempelmann dan O. F. Caltun, “Synthesis and Characterizations of Manganese Ferrites for Hyperthermia Applications,” Materials Chemistry and Physics, vol. 143, pp. 305-310, 2013.
A. T. Raghavender dan N. H. Hong, “Dependence of Ne'el Temperature on the Particle Size of MnFe2O4,” Journal of Magnetism and Magnetic Materials, vol. 323, p. 2145–2147, 2011.
J. Li, H. Yuan, G. Li, Y. Liu dan J. Leng, “Cation Distribution Dependence of Magnetic Properties of Sol–Gel Prepared,” Journal of Magnetism and Magnetic Materials, vol. 322, p. 3396–3400, 2010.
I. Ibrahim, I. O. Ali, T. M. Salama, A. A. Bahgat dan M. M. Mohamed, “Synthesis of Magnetically Recyclable Spinel Ferrite (MFe2O4, M = Zn, Co, Mn) Nanocrystals Engineered by Sol Gel-Hydrothermal Technology: High Catalytic Performances for Nitroarenes Reduction,” Applied Catalysis B: Environmental, vol. 181, p. 389–402, 2016.
S. Sam dan A. S. Nesaraj, “Preparation of MnFe2O4 Nanoceramic Particles by Soft Chemical Routes,” International Journal of Applied Science and Engineering, vol. 9, no. 4, pp. 223-239, 2011.
T. Shanmugavel, S. G. Raj, G. R. Kumar dan G. Rajarajan, “Synthesis and Structural Analysis of Nanocrystalline MnFe2O4,” dalam Physics Procedia , 2014.
J. J. Vijaya, G. Sekaran dan M. Bououdina, “Effect of Cu2+ Doping on Structural, Morphological, Optical and Magnetic Properties of MnFe2O4 Particles/Sheets/Flakes-Like Nanostructures,” Ceramics International, vol. xxxx, no. xxx, pp. xxx-xxx, 2013.
M. A. Gabal dan S. S. Ata-Allah, “Concerning the Cation Distribution in MnFe2O4 Synthesized Through the Thermal Decomposition of Oxalates,” Journal of Physics and Chemistry of Solids, vol. 65, p. 995–1003, 2004.
E. R. Kumar, P. S. P. Reddy, G. S. Devi dan S. Sathiyaraj, “Structural, Dielectric and Gas Sensing Behavior of Mn Substituted Spinel MFe2O4 (M= Zn, Cu, Ni, and Co) Ferrite Nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 398, p. 281–288, 2016.
Q.-m. Wei, J.-b. Li, Y.-j. Chen dan Y.-s. Han, “Cation Distribution in NixMn1−xFe2O4 Ferrites,” Materials Chemistry and Physics, vol. 74, p. 340–343, 2002.
G. Mathubala, A. Manikandan, S. A. Antony dan P. Ramar, “Photocatalytic Degradation of Methylene Blue Dye and Magneto-optical Studies of Magnetically Recyclable Spinel NixMn1-xFe2O4 (x= 0.0 - 1.0) Nanoparticles,” Journal of Molecular Structure, vol. 1113, pp. 79-87, 2016.
L. L. Lang, J. Xu, Z. Z. Li, W. H. Qi, G. D. Tang, Z. F. Shang, X. Y. Zhang, L. Q. Wu dan L. C. Xue, “Study of the Magnetic Structure and the Cation Distributions in MnCo Spinel Ferrites,” Physica B, vol. 462, p. 47–53, 2015.
J. Giri, T. Sriharsha, S. Asthana, T. K. G. Rao, A. K. Nigam dan D. Bahadur, “Synthesis of Capped Nanosized Mn1-xZnxFe2O4 (x = 0 s.d 0.8) by Microwave Refluxing for Bio-medical Applications,” Journal of Magnetism and Magnetic Materials, vol. 293, p. 55–61, 2005.
H. Hejase, S. S. Hayek, Q. Shahnaz dan H. Yousef , “MnZnFe Nanoparticles for Self-controlled Magnetic Hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 324, p. 3620–3628, 2012.
M. Satalkar, N. Ghodke dan S. N. Kane, “Influence of High Temperature Sintering on the Structural and Magnetic Properties of Mn1-xZxFe2O4,” dalam Journal of Physics: Conference Series, 2014.
J. Xie, Y. Zhang, C. Yan, L. Song, S. Wen, F. Zang, G. Chen, Q. Ding, C. Yan dan N. Gu, “High-Performance PEGylated Mn-Zn Ferrite Nanocrystals as a Passive-Targeted Agent for Magnetically Induced Cancer Theranostics,” Biomaterials, vol. 35, pp. 9126-9136, 2014.
I. P. T. Indrayana, “Analisis Parameter Mikrostruktur Nanopartikel Mn1-xZnxFe2O4 Berdasarkan Pola Difraksi Sinar X,” Jurnal Sains dan Teknologi, vol. 8, no. 1, pp. 23-34, 2019.
I. P. T. Indrayana dan E. Suharyadi, “Crystallite Size-Lattice Strain Estimation and Optical Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles,” dalam Journal of Physics: Conf. Series, 2018.
I. P. T. Indrayana, N. Siregar, E. Suharyadi, T. Kato dan S. Iwata, “The Calcination Temperature Dependence of Microstructural, Vibrational Spectra, and Magnetic Properties of Nanocrystalline Mn0.5Zn0.5Fe2O4,” dalam Journal of Physics: Conference Series, 2016.
M. Su, C. He, V. K. Sharma, M. A. Asi, D. Xia, X. Z. Li, H. Deng dan Y. Xiong, “Mesoporous Zinc Ferrite: Synthesis, Characterization, and Photocatalytic Activity with H2O2/Visible Light,” Journal of Hazardous Materials, vol. 211– 212, p. 95– 103, 2012.
A. Meidanchi, O. Akhavan, S. Khoei, A. A. Shokri, Z. Hajikarimi dan N. Khansari, “ZnFe2O4 Nanoparticles as Radiosensitizers in Radiotherapy of Human Prostate Cancer Cells,” Materials Science and Engineering C, vol. 46, p. 394–399, 2015.
R. M. Sebastian, S. Xavier dan M. EM, “Effect of Sintering Temperature on the Structural Magnetic and Electrical Properties of Zinc Ferrite Samples,” Journal of Nanomaterials & Molecular Nanotechnology, vol. 4, no. 2, 2015.
J. Zhang, J.-M. Song, H.-L. Niu, C.-J. Mao, S.-Y. Zhang dan Y.-H. Shen, “ZnFe2O4 Nanoparticles: Synthesis, Characterization, and Enhanced Gas Sensing Property for Acetone,” Sensors and Actuators B, vol. 221, p. 55–62, 2015.
A. Baykal, S. Güner dan A. Demir, “Synthesis and Magneto-optical Properties of Triethylene Glycol Stabilized Mn1-xZnxFe2O4 Nanoparticles,” Journal of Alloys and Compounds, vol. 619, p. 5–11, 2015.
H. Erdemi dan A. Baykal, “Dielectric Properties of Triethylene Glycol-stabilized Mn1-xZnxFe2O4 Nanoparticles,” Materials Chemistry and Physics, vol. xxx, pp. 1-12, 2015.
S. C dan S. C, “Structural, Optical Properties of Manganese–Zinc Ferrite,” International Journal of Recent Scientific Research, vol. 10, no. 3, pp. 31486-31490, 2019.
G. Vasuki dan T. Balu, “Systematic Investigations on the Effect of Divalent Metal Ions (Mg2+ and Zn2+) Substitution on Nanocrystalline Manganese Ferrites,” Journal of Nano and Electronic Physics, vol. 11, no. 1, pp. 1-5, 2019.
S. R. Patade, D. D. Andhare, P. B. Kharat, A. V. Humbe dan K. M. Jadhav, “Impacts of Crystallites on Enhancement of Bandgap of Mn1-xZnxFe2O4 (1 ≥ x ≥ 0) Nanospinels,” Chemical Physics Letters, vol. xxxx, no. xxx, pp. xxx-xxx, 2020.
S. A. Salman, Z. T. Khodair dan S. J. Abed, “Study the Effect of Substrate Temperature on the Optical Properties of CoFe2O4 Films Prepared by Chemical Spray Pyrolysis Method,” International Letters of Chemistry, Physics and Astronomy, vol. 61, pp. 118-127, 2015.
M. Srivastava, A. K. Ojha, S. Chaubey dan A. Materny, “Synthesis and Optical Characterization of Nanocrystalline NiFe2O4 Structures,” Journal of Alloys and Compounds, vol. 481, p. 515–519, 2009.
H. E. Ghandoor, H. M. Zidan, M. M. H. Khalil dan M. I. M. Ismail, “Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles,” International Journal of Electrochemical Science, vol. 7, pp. 5734 - 5745, 2012.
S. Klubnuan, S. Suwanboon dan P. Amornpitoksuk, “Effects of Optical Band Gap Energy, Band Tail Energy and Particle Shape on Photocatalytic Activities of Different ZnO Nanostructures Prepared by a Hydrothermal Method,” Optical Materials, vol. 53, p. 134–141, 2016.
R. Gherbi, Y. Bessekhouad dan M. Trari, “Structure, Optical and Transport Properties of Mg-doped ZnMn2O4,” Journal of Alloys and Compounds, vol. 655, pp. 188-197, 2015.
M. Fox, Optical Properties of Solids, First penyunt., United State: Oxford University Press Inc, 2001.
S. H. Kareem, Y. K. Ooi, S. . S. Abdulnoor, M. Shamsuddin dan S. L. Lee, “Influence of Zinc on the Structure and Morphology of Manganese Ferrite Nanoparticles,” Jurnal Teknologi, vol. 69, no. 5, p. 103–106, 2014.
I. Studenyak, M. Kranjčec dan M. Kurik, “Urbach Rule in Solid State Physics,” International Journal of Optics and Applications, vol. 4, no. 3, pp. 76-83, 2014.
S. D. J dan J. Isac, “Optical Analysis, Urbach and Bandgap Energy of Mn0.8+xZn0.2TixFeO4 with x=0.15 Manganese Zinc Ferrite System Doped with Titanium,” International Journal of Science and Research, vol. 4, no. 10, pp. 605-610, 2015.
S. Kasap, C. Koughia, J. Singh, H. Ruda dan S. K. O’Leary, “Optical Properties of Electronic Materials: Fundamentals and Characterization,” dalam Springer Handbook of Electronic and Photonic Materials, S. Kasap dan P. Capper, Penyunt., New York, Springer Science+Business Media, Inc, 2006, pp. 47-74.
Diterbitkan
2020-08-12
Bagian
Articles